Hybridisation between Rumex rupestris Le Gall (Polygonaceae) and other docks

D. T. HOLYOAK
8 Edward Street, Tuckingmill. Camborne. Cornwall. TR 14 8PA

ABSTRACI

Abstract

Hybrids of Rumex rupestris with R. conglomeratus are reported for the first time and named an $\boldsymbol{R} . \times$ rosemurphyae D. T. Holyoak. hybr, nov. Other hybrids involving R. rupestris have been found at the same locality in West Comwall (v.c. ja), involving R. pulcher $1=$. < trimenii Camus), probably R. (rispus. and possibly R. obtusifolus. Evidence of introgressive hybridisation was found resulting from R. \times rosemurphace backerossing with R. cong/omeratus. but there was no evidence of introgression with other coexisting Rumex species.

KEYWORDS: conservation. Shore Dock. introgression, taxonomy.

INTRODCCTION

Shore Dock Rumex rupestris Le Gall is a rare European endemic species occurring on and near coasts from Wales southwards to north-western Spain (Jalas \& Suominen 1979: Daniels et al. 1998). Many of its localities are on rocky sea cliffs where few other dock species grow. so that opportunities for it to be involved in interspecific hybridisation are less prevalent than with congeners that commonly grow together on disturbed ground inland. Indeed. the reviews by Lousley \& Williams (1975) and Lousley \& Kent (1981) reported few hybrids of R. rupestris, and those only with R. putcher L. and R. crispus L. There do not appear to be any reports of hybrids involving R. ripestris from outside Britain.
R. rupestris was investigated from 1994-1998 in dune-slack like habitats at Penhale Camp, West Cornwall. During this period its population there increased from about 60 to 137 mature plants. At this site. four other dock species (Rumex subgenus Rumex) and several of their interspecific hybrids grow intermingled with. or close to. R. rupestris. It was expected that under these circumstances hybrids involving R. mupestris would occur. and. over the five years of study, a total of eight such hybrid plants was found. apparently representing four different hybrid combinations. This paper extends and partly revises the preliminary notes (Holyoak 1995. 1996) on the hybrids at Penhale Camp by giving descriptions of each of the hybrid taxa and naming the hybrid with R. conglomeratus Murray which has not been reported from elsewhere. In addition. previous records of hybrids involving R. rupestris are reviewed.

Results are also described of biometric investigation of apparent introgression of R. rupestris and R. conglomeratus at Penhale Camp. Potential threats to the survival of R. rupestris from introgressive hybridisation are discussed on the basis of these data.

METHODS

Penhale Camp (West Cornwall: c. SW/770.570) occupies an extensive area of coastal sand-dunes. In most winters water stands in several large and small pools and flows along an ephemeral stream. but all of these areas are usually dry in summer. These dune-slack like areas support vegetation characteristic of dune-slacks. fens and pool-margins, with locally dominant plants of different areas including Eleocharis palustris (L.) Roemer \& Schultes. Epilobium hirsutum L.. Equisetum palustre L.. Mentha aquatica L.. Pulicaria dysenterica (L.) Bemh. and Rorippa nasturtium-aquaticum (L.) Hayek. Rumex rupestris grows intermixed with these wetland plants in four separate small colonies.

TABLE 1. HYBRID FREQUENCY INDEX MEASUREMENTS OF RUMEX RUPESTRIS, R. CONGLOMERATUS AND INTERMEDIATE PLANTS FROM LOCALITIES IN WEST CORNWALL. AUGUST 1996

Site	Hybrid-index score															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Penhate Camp $S W / 769.569$	22	7	4	2	-	-	-	1	-	-	2	4	7	16	22	28
Mount Field SW/781..571	-	-	-	-	-	-	-	-	-	-	-	-	1	2	14	20
near Ventongimps Moor SW/779.51I	-	-	-	-	-	-	-	-	-	-	-	-	-	3	19	20
Bonython Estate SW/696.207	-	-	-	-	-	-	-	-	-	-	-	-	-	6	17	23

See Appendix 1 for details of the five characters used and the scoring system. with which a typical plant of R. rupestris scores 0 and a typical plant of R. conglomeratus scores $15 . R$. conglomeratus occurred at all four of these sites: R. rupestris was present with it only at Penhale Camp.

Other Rumex species present in the same wet areas are R. conglomeratus (hundreds of plants). R. crispus subsp. littoretes (J. Hardy) Akeroyd (many hundreds of plants, but most of them growing in drier edges of wetland vegetation) and R. obtusifolius L. var. obtusifolius (2 plants seen). In addition. R. putcher occurs in very small quantity on dry slopes nearby. Other dock hybrids recorded in the same area were R. conglomeratus $\times R$. crispus (5). R. conglomeratus $\times R$. pulcher (1) and R. crispus \times R. obtusifolius (c. 47) (Holyoak 1996 and subsequent pers. obs.).

The area was visited several times in August of each of the years 1994 to 1998, so that virtually all of the docks present could be identified and counted as their fruits ripened. Some plants were individually marked from 1995 onwards and by 1998 all plants of R. rupestris and its hybrids had been individually marked. In 1995. 1996 and 1998 specimens were collected from each of the marked hybrids involving R. rupestris at times when they had at least some mature fruits.

During August 1996 it was noticed that some fruiting plants of R. conglomeratus showed characters approaching those of the R. rupestris growing near them. Because these intermediate characters seemed likely to have resulted from hybridisation. their morphology and those of the closest plants of R. conglomeratus and R. rupestris were investigated using the "hybrid frequency index" technique of Anderson (1936). The scoring system used is explained in Appendix 1 and other details are given with the results in Table 1 . Comparative data were obtained from three populations of R. conglomeratus growing at localities in West Cornwall that lacked R. rupestris.

Several counts of chromosomes at mitotic metaphase were obtained from root tips of seedlings germinated on moist filter paper in petri dishes. Excised root tips were fixed overnight in Farmer's fluid before squash preparations were prepared using acetic orcein stain.

RESCLTS

Rumex \times rosemurphyae D. T. Holyoak, hybr. nov.

(Rumex conglomeratus Murray $\times R$. rupestris Le Gall) (Fig. 1)
Hybrida a Rumice conglomerato Murray et R. rupestri Le Gall genita et characteribus plerlsque intermedia: ab ambobus fructibus pro parte maxima abortivis et statura nonnunquam multo majore differt.

A hybrid between Rumex conglomeratus and R. rupestris. found within 2 m of plants of those two species. It is intermediate between them in most characters but differs from both in being mostly but not completely infertile and sometimes in its much greater size.

A robust perennial growing in a compact clump from a stout rootstock. The holotype was much larger than accompanying plants of R. conglomeratus and R. rupestris. on 8 August 1995 it had 35

Figure 1. Rumex \times rosemurphate. A. Fruit (i.e. perianth enclosing nutlet) B. Diagrammatic section through fruit. C. Single whorl of inflorescence. D. Inflorescence. E. Leaf from lower part of stem. Scale bars represent 1 mm (A-C) or 10 mm (D. E).
stems up to 1.4 m long. the same plant on 18 July 1998 had 77 flowering stems up to 1.5 m long. in both years most stems had become decumbent before fruits ripened. Lower stem leaves with lamina dt flowering up to $20 \times 8 \mathrm{~cm}$ or more but most lower leases wither before fruits ripen. Upper stem leaves smaller. oblong-lanceolate to lanceolate. At least some leaves thicker than in accompanying plants of R. conglomerotus. but less thick than in some R. rupestris.

Panicles with many branches that mostly arise at about 45° from main stem. the branches more numerous than is usual in R. rupestris. but with branching at more acute angles than typical of R. ronglomeratus. Each of the lower whorls of flowers on each branch subtended by an ovatelanceolate to narrowly lanceolate leafy bract. the bracts becoming abruptly smaller towards the middle of each branch and absent near the branch apex. as in R. conglomeratus. On those parts of the inflorescence where fertile fruits occur. whorls of flowers appear less close and congested than in R. rupestris. more like those of R. conglomeratus. Where nutlets develop. inner perianthsegments oblong to oblong-lanceolate with bluntly rounded apex and sides subparallel in upper part. always entire. Where nutiets develop, inner perianth-segments very variable in size. some as small as in typical R. comglomeratus (length $1.7-2.5 \mathrm{~mm}$) others as long as in typical R. rupestris $12.8-3.7 \mathrm{~mm})$, but with many of intermediate lengths. Where nutets deveiop. cach of the inner perianth-segments has a swollen. rounded tubercle that varies from $70-120 \%$ of the maximum width of perianth segment and $40-65 \%$ of its length. The few well developed nutlets seen were trigonous. $:+-1.6 \mathrm{~mm}$ long. brown, giossy, with acute angles.

Counts of mitotic chromosomes from three seedings grown from seed collected from the Holotype were all $n=20$. Identical counts were obtained from seedings of R. conghomeratus (4) and R. rupestris (5) grown from seed collected from plants growing within 10 m of the holotype. Counts of $\mathrm{n}=20$ have been reported previously for both of these species (e.9. Degraeve 1975 : Rechinger 1993: Kay 1996).

Named for Miss Rosaline J. Murphy in recogntion of her work on the Cornish flora and as thanks for introducing the author to Penhale Camp.
Honotypls: W. Comwall. v.c. ba. Penhale Camp (SW/768.569). among Epilobium hirsutum in ien along course of ephemeral stream. T-8 August 1995 and 18 July 1998. D. T. Hoivock. Field labels C and 28 (RNG).

A smaller plant growing 6 m away from the holotype (field label D) was also identified as R. \times rosemurphrae. On 8 August 1995 this plant had only two flowering stems. the longest 70 cm tall. It resembled the Holotype closely in other respects. including its low lertility.
in addition to the two plants described abose as R. x rosemuphacte and interpreted as F, hybrids between R. conglomtrams and R. rabestris, at least six (and perhaps as many as 3) of the 40 pants of R. conglomeratus growing within 20 m of them in August 1996 showed characters that somewhat approached those of R. iutestris (Table I. Appendix I). As discussed below. these are believed to represent back-crosses between R. x mosemuphinae and R. conglomeratus.

On 13 September 1998 two more piants atubuted to R. x rosemurpitate were seen in a duncslack at Gear Sands $(S W / 7.5$), about 700 m from the Penhale piants (marked by C. S. Neil as numbers 117 and 122 : vouchers were given field labels DTH + and 6 respectively). They were again close to plants of both R. conglomeratus and R. rupestris. Both of these hybrids also had low fertility $<_{2} 2_{0} C_{6}$ of nutlets developed and both showed evidence of "hybrid vigour". one piant having about 20 flowering stems up to 1.3 m tall. the other 39 flowering stems up to $\mathrm{i} \cdot \mathrm{t} \mathrm{m}$ tall. Details of the inflorescence and inner perianth-segments were similar to those described for the Holotype from Penhale Camp. Their (fertile) inner perianth-segments measured (2.0)3.0)-3.3(3.7) mm on one plant and $(2 \cdot 2), 3 \cdot(0-3 \cdot 2(4 \cdot 0) \mathrm{mm}$ on the other.

Probable Rumex crispus L. \times R. rupestris Le Gall

A single plant tentatively attributed to this hybrid was found at Penhale Camp on 24 July 1996. close to both of the supposed parent species. It was about 60 cm tall with a single main stem. The lower stem leaves were lanceolate. up to $23 \times 5 \mathrm{~cm}$. rather thick and with somewhat crisped margins. The panicle had nine rather upright branches diverging at $10-20^{\circ}$ from the main stem. several of the longer branches having several whorls in the lower half of the branch subtended by a narrowly lanceolate petiolate bract. The whorls of the inflorescence appeared less crowded than in R. crispus. but this impression apparenty resulted from low fertility. with many of the inner
perianth-segments failing to enlarge after flowering. The minority of perianth segments that had enlarged were smaller and narrower than in R. crispus. but broader than in R. rupestris (reaching 3.7 mm long $\times 2.8 \mathrm{~mm}$ wide), with wider apices, three swollen tubercles and entire margins (occasionally with a few short or indistinct teeth).

While the balance of prohabilities would suggest that this is a hybrid between R. crispus and R. rupestris, it may be impossible to discount other hybrid combinations using morphological characters. In particular. the parent with wide inner perianth segments might have been R. crispus $\times R$. obtusifolius $(=R . \times$ prunensis Mert. \& Koch) rather than R. crispus. a possibility strengthened by the presence of short teeth on some imner perianth segments of the hybrid. Varied forms of $R . \times$ pratensis were growing nearby, some of them with up to $40^{\%}$ of nutlets well developed. It is even possible that this hybrid plant represents an extreme form of R. \times pratensis or a backeross between it and R. crispus. but some of its enlarged inner perianth segments appear too narrow for that to be likely. The second parent with narrow inner perianth segments might have been R. conglomeratus rather than R. nupestris. but that seems less likely in view of the upright branches of the panicle in the hybrid and the large size of some inner perianth segments and their tubercles. However. involvement of R. conglomeratus would explain the rather prominent bracts on some branches of the panicle. Because of these doubts about identification a new name for the hybrid combination of R. crispus $\times R$. rupestris is not introduced here. The possible occurrence of "triple" hybrids involving R. \times pratensis in diseussed further below.

Rumer crispus \times R. rupestris has been reported from the Isles of Scilly (s.e. Ib) and Kenfig. Glamorgan (v.c. 41) (Lousley \& Williams 1975: Lousley \& Kent 1981: Stace 1991): there are specimens from both vice-counties at RNG. Dr J. R. Akeroyd (pers. comm.) has located an additional specimen collected above rocks just above HWM at Pendower Beach. E. Cornwall (v.c. 2) by Olga Stewart 277/82 on 13 September 1982 (E).

Kay (1996) mentions instances of R. crispus subsp. liftoreus being mistaken for this hybrid. However. the Penhale plant and those discussed by Lousley \& Williams (loc. cit.) differed from R. crispus subsp. littoreus not only in being largely infertile but also in having at least some inner perianth-segments narrower overall, or narrower apically. than in R. crispus.

Possible Rumex obtusifolius L. \times R. mupestris Le Gall

Three dock plants growing close together in the edge of a fen area at Penhale Camp were studied on 8 August 1995 and on $2+$ July 1996. Two of them that survived were studied again on several visits during July-September 1998. allowing herbarium material to be collected at various stages of development. Their puzaling combination of morphological characters and consistently low fertility (with less than zof; of nutets developing implied they were hybrids. but although the three plants are rather similar to each other. they show an odd mixture of features that has prevented confident inference of the parent species.

All three plants grew as compact patches from stout rootstocks. with strong. erect flowering stems. In August 1995 one plant (field label E) had about 25 flowering stems up $t o 1.1 \mathrm{~m}$ tall, the other plant (G) had 11 stems up to 1.2 m tall. The basal and lower stem leaves were thich and fleshy. with strongly undulate margins: an immature basal leaf had petiole 7 cm . lamina 11 cm : the longest stem leaves were oblong-lanceolate and had petiole 6.5 cm . lamina 20.5 cm . The underside of the leaf midrib and some of its strongest veins had low conical papillae. recalling those in R. obtusifolius, but much smaller and less developed. The panicles were similar in habit to those of R. rupestris. with branches mainly rather erect (at $2(1)-30^{\circ}$ from main stem) and none widely divaricate. The inner perianth segments of the minority of fruits that ripen were wider than in R. rupestris. but narrower than in R. crispus (reaching 4.6 mm long and 3.0 mm wide). with a longer and more attenuate apex than in R. crispus. mostly with one or two short teeth on the basal margins. All three inner perianth segments on each well-developed fruit had a large swollen lubercle that on one perianth segment being larger than those on the other two perianth segments.

Dock species growing within 20 m of these plants were R. crispus. R. rupestris and R. conglomeratus, along with numerous $R . \times$ pratensis and two $R . \times$ rosemurphac: the only other dock species within many hundreds of metres being two plants of R. obtusifolius and a few of R. pulcher. Nevertheless. the distinct teeth on the inner perianth segments imply that among the dock species occurring nearby. cither R. obyusifolius or R. pulcher was one of the likely parents of the hybrids. However. involvement of R. putcher seems unlikely. as the hybrids gave no evidence of
the divaricate branching, warty tubercles or other characters of that species. On the other hand. involvement of R. obtusifoliuts might be deduced from the presence of papillac on the back of the leaf midribs. albeit that these and other features of R. obtusifolius appear poorly developed.

Other features of these plants imply that R. rupestris was one parent, including the thick leaves. large of very large tubercles and rather narrow inner perianth segments with more or less attennate apex. Nevertheless. a supposed parentage of R. obtusifolius $\times R$. rupestris does not account for the strongly undulate leaf margins. for which it is tempting to infer some involvement of R. crispus. Since numerous plants of R. crispus $\times R$. obhusifolius $(R . \times$ pratensis) were present nearby. whereas the only two plants of R. obtusifolius found were several hundreds of metres distant. the characters of the three hybrids might therefore be best explained by inferring their parentage as (R. crispus $\times R$. obtusifolius) $\times R$. rupestris.

Hybrids between R. obtusifolius or R. \times pratensis and R. rupestris have not been reported before. Indeed. no "triple" hybrids have been reported for wild docks in Britain. although crosses involving three species have been produced experimentally and they are known in Europe (Lousley \& Williams 1975). The absence of British reports of "triple" hybrids in Rumex might therefore result not from their absence but from the almost insuperable difficulties in identifying them from morphological characters.

Williams (1971) suspected from field observations that $R . \times$ pratensis back-crosses with both parental species and this suspicion was strengthened because R. crispus $\times R . \times$ pratensis has been produced in cultivation. Holyoak (1996) noted that the numerous $R . \times$ pratensis at Penhale Camp vary widely in fertility and in characters of the inner perianth segments. concluding that it is uncertain to what extent their marked variability is due to bach-crossing or merely the expression in F_{1} hybrids of an independent assortment of varied characters from the parental genotypes.

Overall. it seems likely that the three puzzling plants described above originated either from R. obusifolius or $R . \times$ pratensis hybridising with R. rupestris. Because analysis of their morphological characters alone may provide an insufficicnt basis to choose between these alternatives the hybrid combination is not named here.

Rumex \times trimenii Camus
(Rumex putcher $\mathrm{l} . \times$ R. rupestris Le Gall)
A single plant of this hybrid grew close to numerous plants of R. rupestris at Penhale Camp from 1994-1996 (RNG) ; it was described and illustrated by Holyoak (1995). A similar. but smaller. plant was found in 1998 close to a different colony of R. rupestris. The nearest plants of R. putcher to both of these hybrids were 200 m away and few in number.

Both of the Penhale hybrids had low fertility although at least some apparently fertile fruits were surrounded by perianth-segments that enlarged after flowering. Their widely divaricate branches resembled those of R. pulcher and the influence of that species was also apparent from the reticulate venation of the perianth segments, the presence on them of marginal teeth and the warty surface of their tubercles. Influence of R. rupestris was apparent in the hybrids from the strong stems. the rather thick leaves of broadly lanceolate shape and the narrowly lingulate inner perianth-segments. Lousley \& Kent (1981) describe a similar combination of characters in $R . \times$ trimenii. There appear to be three previous records of this hybrid in the wild. each of single plants: in v.c. Ib from east coast of Samson. Isles of Scilly (RNG) and New Grimsby. Tresco. Isles of Scilly (RNG), and in v.c. 2 at Whitesand Bay. E. Cornwall (BM): it also arose spontaneously in the garden of the South London Botanical Institute (Lousley 1971. 1983: Lousley \& Williams 1975: Lousley \& Kent 1981: Margetts \& David 1981: Holyoak 1995. 1996).

DISCUSSION

Rumex rupestris at Penhale Camp has apparently produced hybrids involving all four of the other dock species that grow in the same area. The total population of R. nupestris there was about 60 mature (fruiting) plants in 1994. but it had increased to 132 by 1998. Although the number of hybrids involving this species at Penhale was small (eight plants), they apparently exceeded 10% of the total R. rupestris population during 1994-1996. Morcover. six of the eight hybrids were found in one small fen area ($\mathrm{SW} / 768.569$) that supported a maximum of 18 plants of "pure" R.
rupestris. Two more hybrids were found at Gear Sands alongside a colony of about 27 plants of R. rupestris.

Most. if not all. of these hybrids produce at least some pollen and at least small amounts of viable seed. Hence, given the rather high frequencies of F_{1} hybrids that have been found, there may be opportunities for introgression to occur between the dock species involved. The following discussion explores various possibilities of introgression between Rumex species at Penhale.

POSSIBLE INTROGRESSION OF R. RLPESTRIS GENES INTO R CRISPLS
Lousley and Kent (1981) reported possible introgression of R. rupestris into R. crispus in the Isles of Scilly and at Kenfig. Glamorgan. noting that "in both these localities plants referred to R. crispus occur with exceptionally large. elongate tubercles recalling those of R. rupestris and indicating possible introgression". However, these may have been merely the coastal taxon now treated as R. crispus subsp. littoreus (e.g. in Stace 1991). Nevertheless. plants of R. crispus subsp. littoreus growing at Penhale Camp in the same areas as R. rupestris also include some with unusually clongate tubercles and it was tempting at first sight to suspect introgression had occurred between these species. However, the Penhale plants also grew alongside numerous R. \times pratensis (26 were counted in 1995) and possible back-crosses of these to R. crispus. the plants showing considerable variability in morphology and in fertility (cf. Holyoak 1996). Hence there is no necd to invoke introgression from R. rupestris to explain variability in the R. crispus growing close to it at Penhale Camp.

INTROGRESSION OF R. RLPESTRIS GENES NTO R. COMGLOMERATLS
In August 1996 the small fen area at Penhale Camp with the two plants of $R . \times$ rosemurphyae also had about 40 plants of R. conglomeratus and at least six and perhaps as many as 13 of these showed characters approaching those of R. rupestris (Table 1). Because no evidence of R. conglomeratus showing similar characters was found in 39 plants studied from other parts of Penhale Camp or in a total of 125 plants from three localities elsewhere in West Cornwall. the presence of R. rupestris seems to be associated with occurrence of some of its characters in the cocxisting population of R. conglomeratus (Table 1). Since two F_{1} hybrid plants (R. \times rosemurphace) were present at the site it seems likely that some of the plants of R. conglomeratus had acquired genes from R. rupestris. presumably as a result of back-crossing from F_{1} hybrids.

Although fully adequate data on pollen fertility of $R . \times$ rosemurphate are not available. freshly collected pollen from its Holotype mainly appeared well formed when examined microscopically
 would be expected to occur. although some of its fruit has been successfully germinated in cultivation. In contrast. the plants of R. conslomeratus putatively introgressed with R. rupestris appear to produce mainly fertile fruits so these back-crosses would be expected to persist once established and this may explain the occurrence of at least six and perhaps as many as 13 such plants in one small fen area at Penhale Camp.

RISK OF INTROGRESSIONOF O COYGIOMERATL S GENES INTO R RL PESTRIS
R. rupestris is regarded as a globally threatened species. which is included in the British Red Data Book (Wigginton 1999), placed on the "Biodiversity Short List" (B.S.G.R. 1995) and included in Schedule 8 of the Wildlife and Countryside Act. 1981. It is included in English Nature" "Species Recovery Programme" which is being undertaken collaboratively with Plantlife's "Back from the Brink" Project. Its population at Penhale Camp (137 fruiting plants in 1998) apparently includes at least 20 \% of all R. rupestris plants currenty known in the British Isles (cf. Daniels et al. 1998).

In these circumstances any "leakage" of genes from other docks into R. rupestris populations would complicate attempts to maintain a farourable conservation status for "genotypically pure" R. rupestris. The potential danger is evident from several well documented instances of the loss of flowering plant taxa through introgressise hubridisation. cither locally (DePamphilis \& Wyatt 1990: Klier et al. 1991), or over the whole range of geographically restricted taxa (Reiseberg et al. 1989). However. although the data presented in this paper appear to show "leakage" of genes out of R. rupestris into R. conglomeratits there is no direct evidence for genes of R. comglomeratus entering the R. rupestris genotype. This asymmetry might be genume and have arisen because hybridisation was asymmetrical with respect to male and female parentage or because of differential mortality in hybrid products.

However. this apparently fortunate result might be seriously misleading. both regarding the situation at Penhale Camp and elsewhere. Some doubts arise because few R. nupestris plants could be studied (although at least 1.30 have now been studied in detail, of which 35 were scored for hybrid index frequency in 1996). despite the Penhale Camp population being one of the largest known. Thus. relatively rare, introgressed. fruiting plants of R. rupestris might be absent merely as a result of stochastic processes operating during germination or causing mortality during growth. so that viable seed with an introgressed genotype might nonetheless be present at low frequency in the local seed-bank.

It is also possible that the mode of inheritance or mode of phenotypic expression of the characters used in deriving the hybrid frequency index means it is easier to recognise introgressed R. conglomerams than introgressed R. rupestris. Although polygenic traits can be expected to show intermediate expression in hybrids. traits governed by one or two genes are more likely to show parental expression. which could include strong maternal effects. This may explain why, in a survey of morphological patterns in natural and experimental hybrids of flowering plants. Reiseberg \& Ellstrand (1993) found that hybrids are no more likely to display intermediate morphological features than parental ones. The classic "hybrid frequency index" technique of Anderson (1936) can thus be viewed as applicable in only the minority of situations where hybrids are intermediate.

Considered against this background. the present lack of morphological evidence for introgression of R. conglomeratus genes into R. rupestris might well be misleading. It seems likely that if a theoretical introgressed R. rupestris was once established in a population. further backcrossing and introgression into that species could easily occur. much as appears to have happened with introgressed R. conglomeratus. In view of such dangers, further work on hybridisation of R. rupestris with other docks is desirable. for which morphological studies might usefully be supplemented by genetic studies that should provide additional characters.

Daniels et al. (1998) reported "preliminary" results of isozyme electrophoresis on samples of R. rupestris from south-western England. disclosing a high level of genetic diversity within some populations and significant differences between certain groups of populations. Nevertheless. it remains unclear how much of that genetic variation is intrinsic to R. rupestris and how much of it might be derived from introgressive hybridisation with congeners. This doubt becomes important if the species is to be introduced or reintroduced into the wild since it is then desirable to establish that genotypically "pure" R. rupestris plants are used. Otherwise. attempts to maximise genetic variation in the introduced populations might result in introgressed plants being chosen for introduction attempts.

ACKNOWIRDGM1F.NTS

Thanks are due to the Ministry of Defence for access to Penhale Training Camp and to Major B. Andrews and Lt Col R. C. Taylor for assistance and information. The following botanists helped in field surveys of docks at Penhale or commented on specimens: Dr J. R. Akeroyd. M. Atkinson, T. Atkinson, I. Bennallick. Dr C. N. French. Dr P. A. Gainey. E. C. M. Haes. G. A. Holyoak, G. Kitchener. E. J. McDonncll. H. M. Meredith. R. J. Murphy. C. J. Neil and J. Stewart. Dr Akeroyd and Dr S. L. Jury (RNG) provided information on specimens in herbaria and A. Jones and Dr Q. O. N. Kay provided other unpublished information. T. L. Blockeel kindly prepared the Latin diagnosis. Thanks are also due to Zowie Keating for drawing the figures of Rumex \times rosemurphyete and to the B.S.B.l. for assisting with the cost of the drawings.

REFFRESCES
Avderson. E. (1936). Hybridization in American Tradesantias. Annals of the Missomi Botanic Garden 23: 511-525.
[BSGR| Biodiversity: The: L.K. Sitering Grolp Report (1995). Vohme 2: Action Plans. H.M.S.O.. London.
 (Polygonaceae) in England and Wales, and threats to its survival and genetic diversity. Watsomia 22: 33-
39.

DEGRAEVE. N. (1975). Contribution à l'étude cytotaxonomique des Rumex. 1. Le genre Ruméx L. sensu stricto. Caroologia 28: 187-201.
De:Pamphills. C. W. \& Wyatt. R. (1990). Electrophoretic confirmation of interspecific hybridization in Aescolus (Hippocastanaceae) and the genetic structure of a broad hybrid zone. Evolution 44: 1295-1317.
Holyoak. D. T. (1995). A rare hyhrid dock Rumex \times wimenii Camus al Penhate Camp. West Cormall. Sonctuar 24: 35.
Holyoak. D. T. (1996). Hybridization in docks (Rumex subgenus Rume.v) in Comwall. Botanical Commall 7: 8-26.
Jalas. J. \& Suomivan. J. (1979). Atlas Florae Europacue. Distrihution of varular plames in Europe. 4 Polvomaceac. The Committe for Mapping the Flora of Furope \& Societas Biologica Fennica Vanamo. Helsink:
Kay. Q. O. N. (1996). The conservaton of Rumex rupestris Shore Dock) in Wales. Past present and porsible fature sites and habitats for Rumex rupestris in South and West Wales. Enpublished Report of Countryside Council for Wales, Contract Surve!
Kliter, K. Leoschef. M. J. \& Wevdel. J. F. (1991). Hybridization and introgression in white and vellow ladyslipper orchids (Cypripedium candidum and C pubescens). Journal of heredite 82: 305-319.
Lotsley. J. E. (1971). Flora of the Isles of Scills. David \& Charles. New ton Abbot.
Lotsley. J. E. 1983). Flowering plants and ferms in the Isles of Scilly. 2nd ed. (1975, revised by Clare Harvey (19831. Isles of Scill Musem Publication no. 4. St Mary:
Lotsley. J. E. \& KFit. D. H. (1981). Docks and knotweeds of the British Iskes. Botanial Socicty of the British Isles. London.
 British Isles. Academic Press, London.
Margetts. L. \& Dando. R. W. 19811 . A revele of the Comish Flori. 1980. Institute of Cominh Studes. Redruth.
 Vol. 1. 2nd ed. Cambridge Cnisersity Press. Cambridge.
Reiseberg. L. H. \& Eldstrivd. N. C. (1993). What can molecular and morpholorical markers tell u. ahoui plant hybridization"? Criticul reviows in plant sciemee 12: 213-241.
Reisfberg. I. H.. Zona. S. Abfrbons. L.. \& Martin. T. D. 1989 . Hybridzation in the istand endemic. Catalina Mahogany. Consen atoon bology 3: 52-58.
Stace. C. A. 1991). New Flora of the British Astes. Cambridge Eniversity Press. Cambridee.
Wigginton. M. J.. ed. 1999). British Red Data Boek:. I. Vascular plants. Brded. J.N.C.C.. Peterborough.
Wiflams. J. T. (1971). Seed polymorphism and germination. 2. The role of hybidzation in the gemination polymorphism of Rumex cropmes and R, obtusifoliux. Wedreseare 11: 12-21.

Methods used for hybrid frequency index measurements of Rumex rupestris, R. conglomeratus and intermediate plants from localities in West Cornwall. August 1996.

The hybrid index was derived by scoring each of five characters on each plant. A score of 0 was assigned for character-states typical of R. rupestris. 3 for those typical of R. conglomeratus and $1-$ 2 for intermediate states. Hence, summing data for five characters, a typical plant of R. rupestris would score 0, a typical plant of R. conglomeratus would score 15 . Data were scored only from undamaged plants with mature (drying) perianths. The characters and scoring systems were as follows:

Length of longest innet-perianth segment: mean of 10 perianths examined from middle part of inflorescence: measurements made with eyepiece graticule to accuracy of $\pm 0.05 \mathrm{~mm} ; 0=>3.0$ $\mathrm{mm}, 1=2.5-3.0 \mathrm{~mm} .2=2.0-2.5 \mathrm{~mm} .3=<2.0 \mathrm{~mm}$:
Length of tubercle as per cent of length of longest inner-perianth segment: mean of 10 perianths examined from middle part of inflorescence (same perianths as for preceding character): measurements made with eyepiece graticule to accuracy of $\pm 0.05 \mathrm{~mm}: 0=>60 \% .1=55-60 \% .2$ $=50-55 \% .3=<50 \%$:

Angle of main branches of inflorescence: modal value: angle measured from main stem (not from vertical): measured only for branches $>5 \mathrm{~cm}$ long: $0=<50^{\circ} .1=50-60^{\circ} .2=60-70^{\circ} .3=>$ 70° :

Number of bracts on longest three branches of inflorescence: using only branches $>10 \mathrm{~cm}$ long; $0=1-5$ bracts. $1=6$ or 7 bracts. $2=8$ or 9 bracts. $3=>9$ bracts:
Crowding of whorls on main branches of inflorescence: estinated as ratio of inflorescence whorl width (flowers + their pedicels)/ interwhorl width along the inflorescence axis (length of stem clear of all flowers + pedicels): modal value for all of main inflorescences: $0=$ ratio $<1 \cdot() / 1,1$ $=$ ratio $1 \cdot 0-1 \cdot 25 / 1,2=$ ratio $1 \cdot 25-1.5 / 1,3=$ ratio $>1.5 / 1$.

